Home Trusted by 600,000+ buyers

Nanoparticles could store 'fuel of the future'

19 August, 2012

For the first time, engineers at the University of New South Wales have demonstrated hydrogen can be released and reabsorbed from a promising storage material, overcoming a major hurdle to its use as an alternative fuel source.

Researchers from the Materials Energy Research Laboratory in nanoscale (MERLin) at UNSW have synthesised nanoparticles of a commonly overlooked chemical compound called sodium borohydride and encased these inside nickel shells.
Their unique "core-shell" nanostructure has demonstrated remarkable hydrogen storage properties, including the release of energy at much lower temperatures than previously observed. 
"No one has ever tried to synthesise these particles at the nanoscale because they thought it was too difficult, and couldn't be done," said Dr Kondo-Francois Aguey-Zinsou from the School of Chemical Engineering at UNSW. 
"We're the first to do so, and demonstrate that energy in the form of hydrogen can be stored with sodium borohydride at practical temperatures and pressures."
Considered a major a fuel of the future, hydrogen could be used to power buildings, portable electronics and vehicles — but this application hinges on practical storage technology.
Lightweight compounds known as borohydrides (including lithium and sodium compounds) are known to be effective storage materials but it was believed that once the energy was released it could not be reabsorbed — a critical limitation. This perceived "irreversibility" means there has been little focus on sodium borohydride.
However, the result, published last week in the journal ACS Nano, demonstrates for the first time reversibility is indeed possible using a borohydride material by itself and could herald significant advances in the design of novel hydrogen storage materials.
"By controlling the size and architecture of these structures we can tune theirproperties and make them reversible — this means they can release and reabsorb hydrogen," Aguey-Zinsou, lead author on the paper, said. 
"We now have a way to tap into all these borohydride materials, which are particularly exciting for application on vehicles because of their high-hydrogen storage capacity."
The researchers observed remarkable improvements in the thermodynamic and kinetic properties of their material. This means the chemical reactions needed to absorb and release hydrogen occurred faster than previously studied materials, and at significantly reduced temperatures — making possible application far more practical.
In its bulk form, sodium borohydride requires temperatures above 550°C just to release hydrogen. Even on the nano-scale the improvements were minimal. However, with their core-shell nanostructure, the researchers saw initial energy release happening at just 50°C, and significant release at 350°C.
"The new materials that could be generated by this exciting strategy could provide practical solutions to meet many of the energy targets set by the US Department of Energy," Aguey-Zinsou said.
"The key thing here is that we've opened the doorway."
Source: University of New South Wales

Have your say...

We welcome thoughtful comments from readers
Reload characters
Type the characters you see in this box. This helps us prevent automated programs from sending spam.
Mehwish | Friday, August 31, 2012, 12:00 PM
check out the BP solar energy web page not only do the sell the eiempqunt they have a calculator function that can help you determine what number of panels etc you need there is a lot of difference in a stand alone system and a grid system for most cases a grid tie system is the cheaper and better choice this type system can be built with generator or battery backup but with your house tied to the grid the grid is in effect your back up as for price a 100 watt panel can be had for around 250 U.S.